Robust control under parametric uncertainty via primal-dual convex analysis

نویسندگان

  • Andrey Ghulchak
  • Anders Rantzer
چکیده

A numerical method is proposed for optimal robust control synthesis. The method applies to the case when the coefficients of the characteristic polynomial depend linearly on the uncertain parameters. A primal/dual pair of infinite-dimensional convex problems is solved by successive finite-dimensional approximations. The primal/dual pair has no duality gap, and both upper and lower bounds produced by the approximations converge monotonically to the optimal value. Keywords—robust stabilization, parametric uncertainty, convex optimization, duality, finite dimensional approximation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

Robust Duality for Generalized Convex Programming Problems under Data Uncertainty∗

In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model...

متن کامل

Robust nonlinear optimization via the dual

Robust nonlinear optimization is not as well developed as the linear case, and limited in the constraints and uncertainty sets it can handle. In this work we extend the scope of robust optimization by showing how to solve a large class of robust nonlinear optimization problems. The fascinating and appealing property of our approach is that any convex uncertainty set can be used. We give an expl...

متن کامل

Some Robust Convex Programs without a Duality Gap∗

In this paper, we examine the duality gap between the robust counterpart of a primal uncertain convex optimization problem and the optimistic counterpart of its uncertain Lagrangian dual and identify the classes of uncertain problems which do not have a duality gap. The absence of a duality gap (or equivalently zero duality gap) means that the primal worst value equals the dual best value. We f...

متن کامل

Robust Conjugate Duality for Convex Optimization under Uncertainty with Application to Data Classification∗

In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2002